Hot Product

Product drawing»

Structural drawing»

You are here: Centrifugal separation

Centrifugal separation

Another example of a fluid separation technique may include centrifugal separation. In centrifugal separation, a centrifuge may use centrifugal force to separate more dense contaminants from a fluid medium to leave a clarified fluid. By creating a centrifugal force several times greater than gravity, more dense contaminants separate from the fluid medium. To create centrifugal force within the centrifuge, the fluid medium is often placed within a chamber that rotates along a symmetrical axis creating the centrifugal force in a radial direction away from the symmetrical axis. Water Control valves More dense contaminants suspended in the fluid medium are forced against an outer wall of the rotating chamber and may pass through openings in the chamber to an outer catchment basin. The resulting clarified fluid, which is less dense, remains near the axis of rotation and may typically be removed from the chamber via a clarified fluid outlet.

One method of controlling a centrifugal separation process is to vary the centrifugal force within the chamber. To increase the centrifugal force, either the diameter of the rotating chamber and/or the rotational speed of the chamber can be increased. While increasing rotational speed of a centrifuge may increase the centrifugal force in order to remove smaller, less dense contaminants, problems may also be created by the additional centrifugal force.

Some of the problems associated with increasing centrifugal force within a chamber include burst pressure, balancing, and abrasion. Because more dense contaminants are generally forced against the outer wall or walls of the rotating chamber, burst pressure limits of materials used to form the outer wall or walls may become a critical design element of the chamber. Dynamic balancing of the rotating chamber may also become a problem when wall thickness is increased to provide a higher burst pressure design and/or when rotation speeds are increased. Water Power Control ValvesWhen centrifugal force is increased, the velocity of the more dense contaminants may increase causing any particulate matter to travel at high speeds. The high speed of the more dense particles may impart an abrasive quality when particulate matter contacts the walls of the chamber, which may eventually ablate the chamber walls.

As more dense contaminants are extracted from a fluid medium, the openings formed in the wall that allow the more dense contaminants to be expelled from the rotating chamber may become clogged with particulate matter or solids. Despite high centrifugal force, particulate matter may clog the openings and create a build up of relatively solid materials behind this

2012-01-12

Back

Shanghai MeiYan Yi Pump & Valve Co., Ltd.
MeiYan Yi centrifugal pump Contact MeiYan Yi
Shanghai Enine Pump & Valve Co., Ltd.
Enine centrifugal pump Contact Enine
Shanghai Saitai Pump & Valve CO., Lid.
Saitai centrifugal pump Contact Saitai
Shanghai Fengqi Industrial Development Co., Ltd.
FengQi centrifugal pump Contact FengQi